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Abstract

Convection heat transfer in pulsating turbulent flow with large velocity oscillating amplitudes in a pipe at constant

wall temperature is numerically studied. A low-Reynolds-number (LRN) k–e turbulent model is used in the turbulence

modeling. The model analysis indicates that Womersley number is a very important parameter in the study of pulsating

flow and heat transfer. Flow and heat transfer in a wide range of process parameters are investigated to reveal the veloc-

ity and temperature characteristics of the flow. The numerical calculation results show that in a pulsating turbulent flow

there is an optimum Womersley number at which heat transfer is maximally enhanced. Both larger amplitude of veloc-

ity oscillation and flow reversal in the pulsating turbulent flow also greatly promote the heat transfer enhancement.
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1. Introduction

Periodic fluctuations of fluid flow create different

characteristics of flow and heat transfer. Generally, the

flow fluctuations are divided into two categories: pulsat-

ing flow (or pulsatile flow) in which the periodically

time-averaged velocity is non-zero and oscillating flow

(or oscillatory flow) in which the periodically time-aver-

aged velocity is zero. Pulsating fluid flow and heat trans-

fer occur in many industrial products, such as pulse
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combustor for both civil and military uses, reciprocating

engine, ramjet, cooling system for nuclear reactor, etc.

In addition, the circulation of blood in human body is

also a typical process of pulsating flow and heat transfer.

Heat transfer in pulsating laminar flow has been studied

by many investigators. However, heat transfer in pulsat-

ing turbulent flow is more interesting and important in

practical applications. Unfortunately, it is still lacking

in study.

Experimental studies on pulsating turbulent flow

were conducted actively [1–10]. All of the measure-

ments were made for fully developed flows with small

oscillating velocity amplitudes. Heat transfer in pulsat-

ing turbulent flow was also experimentally studied and

a variety of confusable results were reported: the
ed.
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Nomenclature

AT oscillating amplitude of inlet temperature

Au oscillating amplitude of inlet velocity

cp specific heat at constant pressure (J/kgK)

C constant in inlet turbulent energy dissipa-

tion rate

C1, C2, Cl empirical constants of k–e model

D diameter of pipe (m)

f function in the correlation formula given by

Petukhov and Popov

f1, f2, fl turbulent model functions of k–e model

G production of turbulent kinetic energy

(W/m3)

h instantaneous local heat transfer coefficient

(W/m2 K)

ht instantaneous heat transfer coefficient which

is the average of heat transfer coefficient

over the whole length of pipe at a given

moment, 1
L

R L
0
hdx (W/m2 K)

hx local heat transfer coefficient which is the

average of heat transfer coefficient over a

cycle, 1
2p

R 2p
0

hdðxtÞ (W/m2 K)

k turbulent kinetic energy (m2/s2)

K thermal conductivity of fluid (W/m K)

L length of pipe (m)

Nu overall Nusselt number

Nut instantaneous Nusselt number

Nucorl Nusselt number of fully developed turbulent

pipe flow determined by correlation

Nux local Nusselt number

Nux,t instantaneous local Nusselt number, hD/K

p pressure (N/m2)

Pr Prandtl number, m/a
r radial coordinate (m)

R radius of pipe (m)

Re Reynolds number, UD/m
Rt turbulent Reynolds number, k2/me
s period (s)

t time (s)

T temperature (�C)

Tav average temperature along cross-sectional

area of the pipe (�C)
u velocity in x direction (m/s)

us wall-friction velocity,
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
(m/s)

U periodically time-average of mean velocity

at x = 0 (m/s)

v velocity in r direction (m/s)

Wo Womersley number, R
ffiffiffiffiffiffiffiffi
x=m

p
x axial coordinate (m)

y distance from wall (m)

y+ dimensionless distance from wall, yus/m

Greek symbols

a thermal diffusivity of fluid, K/qcp (m
2/s)

c relative error

e turbulent energy dissipation rate (W/kg)

H periodically time-average of mean tempera-

ture at x = 0 (�C)
l dynamic viscosity (kg/ms)

lt eddy (or turbulent) viscosity (kg/ms)

m kinematic viscosity (m2/s)

q density (kg/m3)

rk turbulent Prandtl number for k

rT turbulent Prandtl number for T

re turbulent Prandtl number for e
sw wall shear stress (N/m2)

x angular frequency (1/s)

Subscripts

0 inlet

c centerline

s steady state flow

t instantaneous

w wall

x position x

Superscripts

– time-average

* dimensionless variable
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frequency had no direct effect on the Nusselt number

[11], no heat transfer enhancement was found [12,13],

a slight heat transfer reduction was found [14], the

change in Nusselt number was negative below a certain

frequency and positive above it [15], heat transfer

enhancement could occur only when the oscillating fre-

quency was higher than a certain value [16,17], the heat

transfer coefficient increased with the pressure oscilla-

tion amplitude [18], high frequencies and large oscilla-

tion amplitudes promoted heat transfer enhancement,

especially at low Reynolds numbers [19], Nusselt num-
ber was found to increase with both pulsation amplitude

and frequency in a square-sectional duct [20] and so on.

Among those experiments, most studies were performed

under the condition of small oscillating velocity ampli-

tudes except the works reported in Refs. [20,21]. Re-

cently, Gbadebo et al. [22] experimentally studied heat

transfer in the thermal entrance region of pulsating tur-

bulent pipe flows under uniform heat flux conditions.

They found that the average Nusselt number increased

first and then decreased with the increase in frequency,

implying the heat transfer was enhanced at medium
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Fig. 1. Problem schematic.
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frequencies and reduced at both higher and lower fre-

quencies within their experimental ranges. Unfortu-

nately, in many articles, some important parameters

were not considered. For example, oscillating ampli-

tudes were not given in Ref. [15,19,22,23]. Consequently,

the empirical correlations for Nusselt numbers obtained

by these investigators do not contain any parameter

involving the oscillating amplitude [22,23].

The analysis methods for the processes of pulsating

turbulent flow and heat transfer can be classified into

two categories: quasi-steady state theory [16,24–26]

and turbulent modeling [27–31]. In view of the quasi-

steady state theory is only suitable to pulsating flow with

very low oscillating frequencies, several numerical stud-

ies with eddy viscosity models have been conducted for

pulsating flow with higher frequencies. Andre et al.

[27] numerically solved momentum and energy equa-

tions for hydrodynamically fully developed and ther-

mally developing pulsating turbulent duct flow using

mixing length (zero-equation model). For pulsating flow

with large oscillation amplitude, the mixing length

hypothesis becomes unpractical because it is difficult to

find a formula to calculate the mixing length for flow

reversal. Valueva et al. [28,29] numerically studied heat

transfer in pulsating turbulent flow with velocity oscilla-

tion amplitudes up to 0.9 in a round tube treating the

momentum and energy equations as parabolic ones. In

fact, their model just is a kind of zero-equation model.

Thyageswaran [30] used k–e two-equation model and

wall function method to study heat transfer in pulse

combustor tail pipe. Due to the wall function k–e model

failed to predict the time-resolved variations of velocity

and heat transfer rate, a boundary layer wall model was

applied. Scotti and Piomelli [31] investigated four low-

Reynolds-number turbulent models in pulsating flows,

and found that all of them perform similarly with

acceptable accuracies as long as the streamwise velocity

is concerned.

The available literature shows that pulsating turbulent

pipe flow and heat transfer are affected mainly by the

following parameters: oscillating frequency, oscillating

amplitude, Reynolds number, and Prandtl number. Pul-

sation patterns, such as the square wave and the sinusoi-

dal wave that is most widely used, also affect the heat

transfer enhancement. In addition, the location of pulsa-

tion source, upstream or downstream of the pulsating

flow, has a direct effect on the heat transfer improvement

[19]. In view of the effect of apparatus size on the experi-

mental results, the Womersley number, instead of oscil-

lating frequency, should be considered in the analysis of

pulsating flow and heat transfer. In the previous experi-

mental studies, almost all flowmeasurements in pulsating

turbulent flows were performed for the developed flow

with small velocity oscillating amplitudes. It is reasonable

to expect that larger velocity oscillation amplitudeswould

produce stronger heat transfer enhancement [24,25].
When comparing the various studies on the heat

transfer enhancement in pulsating flows, several confus-

able parameters should be carefully treated: (a) some

authors discussed Nusselt number at fully developed re-

gion and others focused on Nusselt number averaged

along axial length; (b) in some papers, the parameter

‘‘oscillating amplitude’’ is not a real velocity oscillating

amplitude. Instead, it may be a combination of fre-

quency and oscillation displacement or the ratio of the

maximum displacement at the centerline to that in

steady flow; and (c) different definitions of Nusselt num-

ber were used.

Due to the complexity of the turbulent fluid flow,

studies on heat transfer in pulsating turbulent flow are

far from matured. The available research results of the

heat transfer enhancement show conflicts with each

other. Both the mechanism of the heat transfer enhance-

ment and the relationship between the heat transfer

enhancement and the main processing parameters are

not yet clear. In the theoretical studies, the quasi-steady

state theory can only be applied to the cases of pulsating

flows with very low oscillation frequencies.

In this paper, a numerical study on heat transfer in

pulsating turbulent pipe flow over a wide range of

Womersley number with large oscillating velocity ampli-

tudes (Au > 1) is reported. A two-dimensional model

with elliptic differential equations in the cylindrical coor-

dinate system is established and numerically solved.

Unsteady Reynolds-averaged Navier–Stokes equations

and a low-Reynolds-number k–e turbulent model are

applied.
2. Model analysis

A circular pipe with radius R and length L is chosen

and the pulsating source of the flow is placed at the inlet

of the pipe. Due to the axisymmetry, the problem can be

considered to be two-dimensional and only a half cylin-

drical region is concerned, as shown in Fig. 1, where x is

the axial coordinate and r is the radial coordinate. The

working fluid is air and all thermophysical properties

are assumed to be constant. The ratio of length to radius

of the pipe, L/R, is set to be 200, so that the pipe is long

enough to consider the flow both hydrodynamically and

thermally fully developed in the pipe.
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2.1. Governing equations

Heat transfer in a pulsating pipe flow is governed by

the Navier–Stokes and energy equations. For turbulent

flows, the time-average values of velocity, pressure and

temperature are the most important parameters for the

analysis in engineering. It should be noted that the term

‘‘time-average’’ instead of ‘‘ensemble-average’’ is used

here because from mathematics point of view, time-aver-

age is for continuous function and ensemble-average is

for discrete function. Although the word ‘‘ensemble-

average’’ is frequently used in fluid mechanics, it is not

accurate to define the relevant parameters in the present

study. Based on the physical model, with Boussinesq vis-

cosity model, transient two-dimensional governing

equations in the cylindrical coordinates are:

Continuity equation

o�u
ox

þ 1

r
o

or
ðr�vÞ ¼ 0; ð1Þ

where �u is the time-average velocity in x-direction, �v is

the time-average velocity in r-direction.

Momentum equation in x-direction

oðq�uÞ
ot

þ oðq�u�uÞ
ox

þ 1

r
o

or
ðrq�v�uÞ

¼ � o�p
ox

þ o

ox
ðl þ ltÞ

o�u
ox

� �
þ 1

r
o

or
rðl þ ltÞ

o�u
or

� �

þ o

ox
ðl þ ltÞ

o�u
ox

� �
þ 1

r
o

or
rðl þ ltÞ

o�v
ox

� �
; ð2Þ

where q is the density, �p is the time-average pressure, l is

the dynamic viscosity, lt is the eddy viscosity.

Momentum equation in r-direction

oðq�vÞ
ot

þ oðq�u�vÞ
ox

þ 1

r
o

or
ðrq�v�vÞ

¼ � o�p
or

þ o

ox
ðl þ ltÞ

o�v
ox

� �
þ 1

r
o

or
rðl þ ltÞ

o�v
or

� �

þ o

ox
ðl þ ltÞ

o�u
or

� �
þ 1

r
o

or
rðl þ ltÞ

o�v
or

� �

� 2ðl þ ltÞ�v
r2

; ð3Þ

and energy equation

oðqT Þ
ot

þ oðq�uT Þ
ox

þ 1

r
o

or
ðrq�vT Þ

¼ o

ox
l
Pr

þ lt

rT

� �
oT
ox

� �
þ 1

r
o

or
r

l
Pr

þ lt

rT

� �
oT
or

� �
;

ð4Þ

where T is the time-average temperature, Pr is the Pra-

ndtl number, rT is the turbulent Prandtl number for

temperature T, defined as the ratio of the eddy viscosity
to the turbulent diffusion coefficient for temperature.

Body forces and viscous dissipations are neglected here.
2.2. Turbulent model

Among the available turbulent models, those based

on the eddy viscosity are widely applied. The turbulent

kinetic energy-turbulent energy dissipation rate (k–e)
two-equation model is a good representative. As is

well known, the so-called standard k–e model is valid

only at high turbulent-Reynolds-number, i.e., the tur-

bulent Reynolds number Rt = k
2/me � 1, where k is the

turbulent kinetic energy, m is the kinematic viscosity,

and e is the turbulent energy dissipation rate. Only

with the help of wall function method can the standard

k–e model be applied to the near wall region. Such a

method dominated computational analysis of turbu-

lent flow till the 1970s. Jones and Launder [32,33]

improved the k–e model so that it can be valid in

the low-Reynolds-number (low Rt) region, which occurs

in the vicinity of the wall. It is called low-Reynolds-

number (LRN) k–e model. As pointed out by Patel

et al. [34] in their review on LRN turbulent models,

one of the shortcomings of this model is a lot of

grid points have to be deployed in the near wall

region, which calls for a high quality computer. Unless

and until nowadays this model can be practically

used with the help of supercomputers. In recent years,

several other LRN k–e models have been proposed. In

the present study, the LRN k–e model developed by

Torii and Yang [35] is used. This model is summarized

as follows.

Eddy viscosity formula

lt ¼ Clflq
k2

e
; ð5Þ

where Cl is an empirical constant, fl is the turbulent

model function.

k-equation

oðqkÞ
ot

þ oðq�ukÞ
ox

þ 1

r
o

or
ðrq�vkÞ

¼ o

ox
l þ lt

rk

� �
ok
ox

� �
þ 1

r
o

or
r l þ lt

rk

� �
ok
or

� �
þ G� qe; ð6Þ

where rk is the turbulent Prandtl number for k, defined

as the ratio of the eddy viscosity to the turbulent diffu-

sion coefficient for k, G is the production of turbulent

kinetic energy defined as

G ¼ lt 2
o�u
ox

� �2

þ 2
o�v
or

� �2

þ 2
�v
r

� �2

þ o�u
or

þ o�v
ox

� �2
 !

ð7Þ
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and e-equation

oðqeÞ
ot

þ oðq�ueÞ
ox

þ 1

r
o

or
ðrq�veÞ

¼ o

ox
l þ lt

re

� �
oe
ox

� �
þ 1

r
o

or
r l þ lt

re

� �
oe
or

� �

þ C1f1G
e
k
� C2f2q

e2

k
; ð8Þ

where re is the turbulent Prandtl number for e, defined
as the ratio of the eddy viscosity to the turbulent diffu-

sion coefficient for e, C1 and C2 are the empirical con-

stants of the k–e model, f1 and f2 are the turbulent

model functions of the k–e model, which are

C1 ¼ 1.4; C2 ¼ 1.8; Cl ¼ 0.09;

rk ¼ 1.4; re ¼ 1.3; rT ¼ 0.95;

f1 ¼ 1.0;

f2 ¼ 1� 2

9
exp �R2

t

36

� �� �
1� exp � yþ

5

� �� �2

;

fl ¼ 1þ 3.45ffiffiffiffiffi
Rt

p
� �

1� exp � yþ

70

� �� �
;

ð9Þ

where y+ is the dimensionless distance from the wall, de-

fined as yus/m. Here us is the wall-friction velocity given

by
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
where sw is the wall shear stress.

This LRN turbulent model is based on the eddy vis-

cosity formula Eq. (5), which is valid only in attached

shear layers. Therefore, a modification may be needed

for separated flows. Fortunately, Seume and Simon

[36] have experimentally observed that no flow separa-

tion occurred in oscillating turbulent flows. In fact,

Ahn and Ibrahim [37] successfully used the standard

k–e model with the help of the wall function method

for such an oscillating turbulent flow. Although flow

reversal may occur in a pulsating turbulent flow with a

large velocity oscillating amplitude, it can be confidently

inferred that no flow separation would develop in the

pulsating turbulent flow. Consequently, the above men-

tioned LRN k–e model can be used for the pulsating tur-

bulent flows with large velocity oscillating amplitudes. It

is noted that an LRN k–e model developed by Launder

and Sharma [38] was successfully used by Ismael and

Cotton [39] to calculate the wall shear stress in a pulsat-

ing turbulent pipe flow.

2.3. Boundary and initial conditions

At the inlet, a parallel uniform flow is assumed and

the velocity is considered to be sinusoidally oscillatory

around a periodically time-averaged value of the mean

velocity. In some cases, for example the flow in pulse

combustor, the temperature also pulsates. Here the same

wave pattern and the phase angle as those of the inlet

velocity are used for the inlet temperature while the

no-slip condition at the wall and a constant wall temper-
ature are imposed. At the exit, the velocity and temper-

ature are assumed to be fully developed with zero-

velocity gradient and zero-temperature gradient in the

axial direction of the pipe because the pipe is long

enough. Consequently, the boundary conditions can be

formulated as follows:

At x = 0,

�u ¼ Uð1þ Au cosðxtÞÞ; �v ¼ 0;

k ¼ 0.01
1

2
�u20

� �
; e ¼ Clfl

k2C
DU

;

T ¼ H þ AT ðH � T wÞ cosðxtÞ;

ð10Þ

where U is the periodic time-average of the mean veloc-

ity at x = 0, Au is the oscillating amplitude of the inlet

velocity, x is the angular frequency, �u0 is the inlet veloc-
ity, C is constant, D is the pipe diameter, H is the peri-

odic time-average of the mean temperature at x = 0, AT
is the oscillating amplitude of the inlet temperature, Tw

is the wall temperature.

At x = L,

o�u
ox

¼ 0;
o�v
ox

¼ 0;
ok
ox

¼ 0;

oe
ox

¼ 0;
oT
ox

¼ 0.

ð11Þ

At r = 0,

o�u
or

¼ 0; �v ¼ 0;
ok
or

¼ 0;

oe
or

¼ 0;
oT
or

¼ 0.

ð12Þ

At r = R,

�u ¼ 0; �v ¼ 0; k ¼ 0;

e ¼ 2m
o
ffiffiffi
k

p

or

 !2

; T ¼ T w.
ð13Þ

The initial flow velocity is taken as zero and the

initial fluid temperature is considered to equal the wall

temperature. Therefore, the initial conditions (for

t 6 0) are written as

�u ¼ 0; �v ¼ 0; k ¼ k0; e ¼ e0;

T ¼ H ðx ¼ 0Þ;
T ¼ T w ðx > 0Þ;

ð14Þ

where k0 and e0 are the inlet turbulent kinetic energy and
the inlet turbulent energy dissipation rate, respectively.

2.4. Heat transfer coefficients and Nusselt numbers

Due to the unique characteristics of the pulsating

flow, several heat transfer coefficients have to be care-

fully defined. The instantaneous local heat transfer coef-

ficient is defined as
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hðx; tÞ ¼
�K oT

or

���
r¼R

T av � T w

; ð15Þ

where K is the thermal conductivity, T av is the bulk tem-

perature, which, in general, is defined as the velocity-

weighted average of the fluid temperature across the

pipe and given by

T avðx; tÞ ¼
R R
0
�uðx; r; tÞT ðx; r; tÞrdrR R

0
�uðx; r; tÞrdr

. ð16Þ

However, in pulsating flows with large velocity oscil-

lation amplitudes, a flow reversal occurs and conse-

quently, Eq. (16) loses its physical meaning. In this

case, the section-average temperature is applied [20,40],

which is defined as

T avðx; tÞ ¼
R R
0
T ðx; r; tÞrdrR R

0
rdr

. ð17Þ

The local heat transfer coefficient, defined as the

average of heat transfer coefficient over a cycle, is for-

mulated as

hxðxÞ ¼
1

2p

Z 2p

0

hdðxtÞ. ð18Þ

The instantaneous heat transfer coefficient, defined as

the average of heat transfer coefficient over the whole

length of pipe at a given moment, is expressed as

htðtÞ ¼
1

L

Z L

0

hdx. ð19Þ

Subsequently, several relevant Nusselt numbers are

rationally introduced. The instantaneous local Nusselt

number is

Nux;tðx; tÞ ¼
hD
K

. ð20Þ

The local Nusselt number is

NuxðxÞ ¼
hxD
K

¼ 1

2p

Z 2p

0

Nux;tdðxtÞ. ð21Þ

The instantaneous Nusselt number is

NutðtÞ ¼
htD
K

¼ 1

L

Z L

0

Nux;t dx. ð22Þ

The overall Nusselt number, Nu, can be defined as

Nu ¼ 1

2pL

Z L

0

Z 2p

0

Nux;tdðxtÞdx; ð23Þ

which can be also expressed as

Nu ¼ 1

L

Z L

0

Nux dx ¼
D
KL

Z L

0

hx dx ð24Þ

or

Nu ¼ 1

2p

Z 2p

0

NutdðxtÞ ¼ D
2pK

Z 2p

0

htdðxtÞ. ð25Þ
It should be noted that due to the flow reversal in

pulsating flows with large velocity oscillating ampli-

tudes, the wall shear stress has to be carefully treated,

which is defined as

sw ¼
�l

o�u
or

for normal flow;

l
o�u
or

for flow reversal:

8><
>: ð26Þ
2.5. Derivation of dimensionless formulas

The relevant dimensionless parameters are defined as

x� ¼ x
R
; r� ¼ r

R
; t� ¼ xt

2p
;

�u� ¼ �u
U
; �v� ¼ �v

U
; �p� ¼ �p

qU 2
;

T
� ¼ T � T w

H � T w

; k� ¼ k

U 2
; e� ¼ em

U 4
.

ð27Þ

Subsequently, the governing equations, the boundary

conditions, and the initial conditions are non-dimen-

sionalized using these non-dimensional parameters and

expressed as follows. Dimensionless continuity equation

is

o�u�

ox�
þ 1

r�
o

or�
ðr��v�Þ ¼ 0. ð28Þ

Dimensionless momentum equation in x-direction is

Wo2

pRe
o�u�

ot�
þ oð�u��u�Þ

ox�
þ 1

r�
o

or�
ðr��v��u�Þ

¼ � o�p�

ox�
þ o

ox�
2

Re
1þ Clfl

k�2

e�

� �
o�u�

ox�

� �

þ 1

r�
o

or�
r�

2

Re
1þ Clfl

k�2

e�

� �
o�u�

or�

� �

þ o

ox�
2

Re
1þ Clfl

k�2

e�

� �
o�u�

ox�

� �

þ 1

r�
o

or�
r�

2

Re
1þ Clfl

k�2

e�

� �
o�v�

ox�

� �
; ð29Þ

where Wo ¼ R
ffiffiffiffiffiffiffiffi
x=m

p
is the Womersley number,

Re = UD/m is the Reynolds number.

Dimensionless momentum equation in r-direction is

Wo2

pRe
o�v�

ot�
þ oð�u��v�Þ

ox�
þ 1

r�
o

or�
ðr��v��v�Þ

¼ � o�p�

or�
þ o

ox�
2

Re
1þ Clfl

k�2

e�

� �
o�v�

ox�

� �

þ 1

r�
o

or�
r�

2

Re
1þ Clfl

k�2

e�

� �
o�v�

or�

� �

þ o

ox�
2

Re
1þ Clfl

k�2

e�

� �
o�u�

or�

� �

þ 1

r�
o

or�
r�

2

Re
1þ Clfl

k�2

e�

� �
o�v�

or�

� �

� 2

Re
1þ Clfl
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Dimensionless k-equation is

Wo2

pRe
ok�

ot�
þ oð�u�k�Þ

ox�
þ 1

r�
o

or�
ðr��v�k�Þ

¼ o

ox�
2

Re
1þ Clfl

k�2

e�rk

� �
ok�

ox�

� �

þ 1

r�
o

or�
r�

2

Re
1þ Clfl

k�2

e�rk

� �
ok�

or�

� �

þ 2

Re
Clfl

k�2

e�
G� � Re

2
e�; ð31Þ

where

G� ¼ 2
o�u�

ox�

� �2

þ 2
o�v�

or�

� �2

þ 2
�v�

r�

� �2

þ o�u�

or�
þ o�v�

ox�

� �2
 !

.

ð32Þ
Dimensionless e-equation is

Wo2

pRe
oe�

ot�
þ oð�u�e�Þ

ox�
þ 1

r�
o

or�
ðr��v�e�Þ

¼ o

ox�
2

Re
1þ Clfl

k�2

e�re

� �
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� �
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� �
oe�
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� �

þ 2

Re
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� � Re

2
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e�2

k�
. ð33Þ

Dimensionless energy equation is

Wo2

pRe
oT

�

ot�
þ oð�u�T �Þ

ox�
þ 1

r�
o

or�
ðr��v�T �Þ

¼ o

ox�
2
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Pr
þ Clfl
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� �
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� �
oT

�

or�

� �
. ð34Þ

It can be found that, besides Reynolds number and

Prandtl number, Womersley number is also an impor-

tant parameter in the study of pulsating flow. In fact,

relative to oscillating frequency, Womersley number is

more qualified to represent the characteristics of pulsat-

ing flow.

The corresponding dimensionless boundary condi-

tions are:

at x* = 0,

�u� ¼ 1þ Au cosð2pt�Þ; �v� ¼ 0; k� ¼ 0.01
1

2
�u�20

� �
;

e� ¼ Clfl
k�2C
Re

; T
� ¼ 1þ AT cosð2pt�Þ

ð35Þ

at x* = L/R,

o�u�

ox�
¼ 0;

o�v�

ox�
¼ 0;

ok�

ox�
¼ 0;

oe�

ox�
¼ 0;

oT
�

ox�
¼ 0

ð36Þ
at r* = 0,

o�u�

or�
¼ 0; �v� ¼ 0;

ok�

or�
¼ 0;

oe�

or�
¼ 0;

oT
�

or�
¼ 0

ð37Þ

at r* = 1,

�u� ¼ 0; �v� ¼ 0; k� ¼ 0;

e� ¼ 8

Re2
o
ffiffiffiffiffi
k�

p

or�

 !2

; T
� ¼ 0.

ð38Þ

The dimensionless initial conditions are:

�u� ¼ 0; �v� ¼ 0; k� ¼ k�0; e� ¼ e�0;

T
� ¼ 1 ðx� ¼ 0Þ;

T
� ¼ 0 ðx� > 0Þ.

ð39Þ

The corresponding dimensionless expressions of the

relevant heat transfer coefficients and Nusselt numbers

are given by

hðx�; t�Þ ¼ � K

RT
�
av

oT
�

or�

����
r�¼1

; ð40Þ

where

T
�
avðx�; t�Þ ¼

R 1

0
T

�ðx�; r�; t�Þr� dr�R 1

0
r� dr�

; ð41Þ

hxðx�Þ ¼
Z 1

0

hdt� ¼ �K
R

Z 1

0

1

T
�
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����
r�¼1

dt�; ð42Þ
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1

L�

Z L�

0
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L

Z L�

0
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T
�
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oT
�

or�

����
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dx�; ð43Þ

Nuxðx�Þ ¼
hxD
K

¼ �2

Z 1

0

1

T
�
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oT
�
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dt�; ð44Þ
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�
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�
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Nu ¼ D
KL

Z L

0

hx dx

¼ � 2

L�

Z L�

0

Z 1

0

1

T
�
av

oT
�

or�

����
r�¼1

dt� dx�. ð46Þ

The denotation of time-average value, ‘‘–’’, is omitted

hereafter for simplicity.

2.6. Numerical model

The discretization of the governing differential equa-

tions is performed using the finite volume method [41]

applied to a staggered orthogonal grid system. A

power-law scheme is employed for convection fluxes.

The SIMPLEC algorithm [41,42], which is a powerful

algorithm to solve fluid flow and heat transfer problems,

is used and the discretized equations are solved with the
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line-by-line ADI (Alternating-Direction Implicit) itera-

tive method. The solution of each point at each grid line

is directly obtained through the TDMA (TriDiagonal

Matrix Algorithm). To accelerate convergence, a recom-

mended value 1.85 of the relaxation parameter is intro-

duced in the TDMA solver [42]. The convergence

criteria with Euclidean norm of the residuals are used

in solving the governing equations in each cycle of iter-

ation [42]. Meanwhile, under-relaxation is applied for

the momentum equations, k-equation, and e-equation.

2.7. Verification of computer code for pulsating

turbulent flows

To verify the correctness of the computer code for the

calculation of heat transfer in pulsating turbulent flow, a

comparison between the present numerical results and

available experimental data is made first. Since experi-

mental data in pulsating turbulent flow with large oscil-

lating velocity amplitudes is lacking, experimental

results obtained by Tu and Ramaprian [5] are used as

the comparison data. Tu and Ramaprian experimentally

measured the sectional velocity distribution in the fully

developed pulsating turbulent flow of water, in which

the Reynolds number was Re = 50,000 and the Womers-

ley number was Wo = 118.5. Although the oscillating

velocity amplitude Au was only 0.15 and consequently

no flow reversal occurred, it is still worthy to be used

for the examination of our computer code for the calcu-

lation of the pulsating turbulent flow in a pipe. Both

numerical and experimental sectional velocities of fully

developed pulsating turbulent pipe flow are shown in

Fig. 2(a). They agree well with each other, indicating

that our computer code is practically usable for the com-

putation of pulsating turbulent flow.

The computation results are also compared with the

experimental results obtained by Fallen [21]. In his

experiment, water was used as the medium of heat trans-

fer, Reynolds number was between 1000 and 107,000,

the oscillating frequency was from 0.5 to 4 cycles per sec-

ond, and the oscillating velocity amplitude was up to 4.

The comparison between the numerical and the experi-

mental results for the heat transfer enhancement is dis-

played in Fig. 2(b). It can be seen that the numerical

data fall inside the limits of the experimental data, dem-

onstrating the dependability of our computer code for

the computation of the heat transfer in the pulsating tur-

bulent flow.
3. Results and discussion

3.1. Steady state turbulent flow and heat transfer

First of all, numerical study on heat transfer in steady

state turbulent pipe flow with Re = 25,000 and Pr =
0.703 is conducted to examine the computer code. In

the present study, very fine grids are deployed near the

wall regions. About 15 control volumes are taken within

y+ < 10. In order to eliminate the effect of grid size on

the calculation results, several cases of heat transfer in

steady state turbulent pipe flow with different grid sizes

are checked. As is well known, the fully developed tur-

bulent flow is formed at about L/D = 10�60 [43,44] in

a pipe. Here the Nusselt number at x* = 160 (corre-

sponding to L/D = 80) is chosen as the Nusselt number

of fully developed turbulent flow. The Nusselt number

of fully developed turbulent flow in a pipe can be also

determined from the correlation obtained by Petukhov

and Popov [45,46]

Nucorl ¼
ðf =2ÞRePr

ð1þ13.6f Þþð11.7þ1.8Pr�1=3Þðf =2Þ1=2ðPr2=3�1Þ
;

ð47Þ
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where

f ¼ ð3.64 logRe� 3.28Þ�2
. ð48Þ

For Re = 25,000 and Pr = 0.703, the exact value of Nus-

selt number is 58.68. Table 1 shows the test results of

grid independence. The relative error of numerically cal-

culated Nusselt number at x* = 160 to the value from

Eq. (47), c, is evaluated for different grid sizes and listed

in Table 1, which are within a reasonable tolerance

range. It can be seen that the grid size 280 · 72(axial ·
radial) is good enough for the present numerical calcula-

tions and the chosen domain length L/R = 200 is long

enough to keep the flow hydrodynamically and ther-

mally fully developed.

3.2. The effect of temperature oscillation at inlet

Similar to the velocity boundary condition at inlet,

the temperature boundary condition at the inlet is also

set to oscillate sinusoidally around a periodically time-

averaged temperature with the same phase as velocity.

Table 2 gives the test results for several cases with differ-

ent values of temperature oscillation amplitude AT. It is

shown that the heat transfer is hardly affected by the

temperature oscillation amplitude. Therefore, it is rea-

sonable to take AT = 0.02 in the present study.

3.3. Cyclic axial velocity, temperature, and pressure at

centerline

Fig. 3 shows cyclic centerline velocities u�c and tem-

peratures T �
c in the fully developed region with

Re = 25,000 and Au = 3 for different Womersley num-

bers. It can be seen that the velocity always pulsates

sinusoidally, corresponding to the pulsating form of
Table 1

Tests on grid independence (Re = 25,000, Pr = 0.703)

Grid (axial · radial) Nus Nux,s(x* = 160) c (%)

180 · 62 72.87 63.73 8.6

280 · 62 68.55 63.43 8.1

280 · 72 67.85 61.30 4.5

280 · 82 69.57 60.97 3.9

380 · 72 66.20 61.00 4.0

380 · 82 66.83 60.82 3.6

Table 2

The effect of temperature oscillation at inlet on heat transfer

(Re = 25,000, Pr = 0.703, Wo = 40, Au = 3)

AT Nu Nux(x* = 160)

0.01 106.6040 98.1718

0.02 106.6031 98.1715

0.1 106.5963 98.1696

0.2 106.5891 98.1675
the inlet velocity. The two zero-velocity crosspoints indi-

cate the streamwise velocity goes through zero twice in

each cycle, one passes through zero from positive at

about t* = 0.3 and the other passes through zero from

negative at about t* = 0.7. That means a flow reversal

occurs in each pulsating period.

The cyclic temperatures at the centerline for different

Womersley numbers display non-sinusoidal curves ex-

cept the case of Wo = 60, as shown in Fig. 3(b). It is

obvious that the distortion of the cyclic temperature

curves deviated from the sinusoidal fluctuation damps

with the increase in the Womersley number. Similar cyc-

lic centerline velocity and temperature pulsations were

found in experimental results of turbulent pulsating

channel flow with large velocity oscillating amplitudes

by Dec et al. [20,47,48].

The cyclic pressure at the centerline p�c is shown in

Fig. 4(a). It is sinusoidal, which is in accord with the pul-

sation pattern of velocity but with a phase lag. Fig. 4(b)
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shows cyclic axial pressure gradient at the centerline,

(dp*/dx*)c, which is also sinusoidal. Comparing the

phase of velocity in Fig. 3(a) and that of axial pressure

gradient, about 90	 phase lag of the axial pressure gradi-

ent to the velocity is found. This result agrees with ear-

lier analytical solution for pulsating laminar flow

obtained by Uchida [49]. According to the analytical

solution, out-of-phase between velocity and axial pres-

sure gradient occurs and approaches 90	 at a high

Womersley number. Since the pressure gradient changes

periodically from favorable to adverse, it results in peri-

odic flow reversal when the velocity oscillation ampli-

tude becomes larger.

3.4. Time-resolved sectional axial velocity and

temperature in a period

Because the velocity and the temperature in pulsating

flow change periodically, understanding the characteris-
tics of the flow and the temperature at different times

within a cycle, i.e., so-called time-resolved velocity and

temperature, is important to the study. The fully devel-

oped sectional time-resolved velocity during a period is

shown in Fig. 5(a). The velocity varies from positive to

negative and vice versa during a period due to the large

velocity oscillatory amplitude and the change of the

pressure gradient. In the great portion of the pipe sec-

tion around the center of pipe, the velocity profile is flat.

This region can be named as the core region. Near the

wall, the velocity gradient becomes very large, corre-

sponding to the boundary layer and is called the bound-

ary region. In the buffer region between the core and the

boundary regions, a velocity ‘‘overshoot’’ occurs at a

few moments, for example, at t* = 0.3, 0.4, 0.7, and

0.8, shown in Fig. 5(a). That means the flow velocity

at these moments exceeds the velocity in the core region

and, hence, causes larger velocity gradient at the wall

than that in steady-state flow. Consequently, more heat

is transported at these moments. This phenomenon is

also called Richardson effect [49]. It happens when the

streamwise velocity passes through the zero-velocity

crosspoints. Obviously, flow reversal greatly affects the

heat transfer enhancement in pulsating turbulent flow.

As is well known, the Richardson effect also exists in

pulsating laminar flow. However, the buffer region in

pulsating turbulent flow is much larger than one in pul-

sating laminar flow.

Fig. 5(b) and (c) are the time-resolved sectional tem-

perature in a period for fully developed pulsating flow.

In the pipe center region, the temperature profile is flat,

while at the region near the wall, the temperature gradi-

ent becomes very large, corresponding to the thermal

boundary layer. The thickness of the thermal boundary

layer varies with the pulsation of fluid flow in the period.

Unlike the velocity profile, there is no Richardson effect

in the temperature profile. The fully developed sectional

temperature in steady state pipe flow is also shown in

Fig. 5(b) and (c). It can be seen that during a period,

the thickness of the thermal boundary in the pulsating

flow is sometimes thinner and sometimes thicker than

that in steady state flow.

3.5. Nusselt number

The local Nusselt numbers for different Womersley

numbers under the conditions of Re = 25,000 and

Au = 3 are plotted in Fig. 6, showing the similar course

of curve to the case of steady state pipe flow at the same

Reynolds number. At the downstream of the pipe, the

curves become flat up to the end, for the flows are fully

developed. It can be seen clearly that the heat transfer in

a pipe flow is greatly enhanced throughout the pipe by

the pulsation. Additionally, for the cases of large

Womersley numbers, the curves of the local Nusselt

number of the pulsating flows become flat earlier than
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that of the steady state flow, implying that the pulsating

turbulent flows become fully developed with shorter en-

trance regions. For example, in the case of Wo = 60 the

entrance region is about x* = 60, which is much shorter

than one in the case of steady state flow (x* 
 100).

Comparing the local Nusselt numbers for the cases of

Wo = 40 and Wo = 60, it is found that the curve for

Wo = 60 is over that forWo = 40 only in the entrance re-

gion and soon becomes lower than that for Wo = 40 in

most part of the pipe. It implies that higher Womersley

number benefits to heat transfer enhancement only in

the entrance region. It is also seen that to blindly in-

crease in Womersley number can not reach the maximi-

zation of the enhancement of heat transfer, instead, an

optimal value of Womersley number exists for the heat

transfer enhancement, which is found to roughly equal

40.

Fig. 7 shows instantaneous local Nusselt number

at fully developed region in a period. Obviously, the
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instantaneous local Nusselt number is non-sinusoidal.

Around t* = 0 and t* = 1, the Nusselt number reaches

maximum. From Fig. 3(a), it is seen that the flow veloc-

ity reaches maximum also at these moments. It indicates

that larger velocity induced by pulsation of the fluid flow

results in higher heat transfer rate. In the middle of the

period, the instantaneous local Nusselt numbers become

lower, corresponding to the negative velocities where the

flow reverses. While the velocity decreases to the mini-

mum at t* = 0.5, the Nusselt number reaches a local

maximum value at or after a little from t* = 0.5. It

should be also noted that there are two dips in the curves

of the instantaneous local Nusselt number, which coin-

cide with the two zero-velocity crosspoints in the period,

respectively. After the velocity passes through the first

zero-velocity crosspoint, the flow reversal occurs and

Nusselt number increases and then decreases until the

velocity approaches the second zero-velocity crosspoint.

After the velocity passes through the second zero-veloc-

ity crosspoint, Nusselt number increases with the veloc-

ity. This clearly reveals that the flow reversal enhances

heat transfer. The phases of the two dips in the curve

of instantaneous local Nusselt number do not exactly

coincide with the phases of the two zero-velocity cross-

points in the curve of the centerline velocity because of

the phase lag between the flow reversals at the flow cen-

terline and at the wall.

It is found that Reynolds number strongly affects the

heat transfer enhancement denoted by Nux/Nux,s, where

Nux,s is the local Nusselt number of steady state turbu-

lent pipe flow. When the Reynolds number is relatively

low, the effect of Reynolds number on the heat transfer

enhancement in the pulsating turbulent flow sharply in-

creases with Reynolds number. However, when Rey-

nolds number exceeds a certain value, say 2 · 104 for

the case of Wo = 40 and Au = 3, the effect becomes
nearly constant, as shown in Fig. 8. The velocity oscilla-

tion amplitude also strongly affects the heat transfer

enhancement in the pulsating turbulent flow. When the

velocity oscillation amplitude is small, the heat transfer

is moderately enhanced, while the enhancement is rap-

idly increased when the velocity oscillation amplitude

exceeds a certain value, say Au > 1.5 for the case of

Re = 25,000 andWo = 40, as shown in Fig. 9. This result

well coincides with the experimental results in Ref. [25],

where heat transfer enhancement is increased rapidly

when Au > 1.5 and heat transfer is not changed when

Au < 1.5. The numerical simulation reveals that

Womersley number has a complex effect on the heat

transfer enhancement. Different from the pulsating lam-

inar flow in which heat transfer is reduced at very small

Womersley numbers and enhanced at larger Womersley
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numbers, the heat transfer in the pulsating turbulent

flow is always enhanced by the flow fluctuations, as

shown in Fig. 10. It is also discovered that for all differ-

ent tested oscillation amplitudes of the velocity, an opti-

mal value of Womersley number for the heat transfer

enhancement exists between 40 and 50 when Reynolds

number is 25,000.
4. Conclusions

A two-dimensional model to describe heat transfer in

pulsating turbulent flow in a pipe is developed and sim-

ulated with the finite volume method. The simulation re-

sults on the fully developed pulsating turbulent flow and

the heat transfer enhancement are consistent with the

available experimental data. The model analysis shows

that Womersley number is an important parameter in

the study of pulsating flow and heat transfer.

The numerical results show that pulsating flows with

large Womersley numbers become fully developed with

shorter entrance region compared with the steady state

flow. The heat transfer enhancement is mainly affected

by Womersley number and velocity oscillation ampli-

tude. An optimal Womersley number exists and is found

to be 40–50 for different velocity oscillating amplitudes

at Reynolds number of 25,000. The velocity oscillation

amplitude is found to strongly enhance heat transfer,

especially when the amplitude exceeds a certain value.

The heat transfer enhancement is also affected by Rey-

nolds number, especially at lower Reynolds numbers.

Temperature fluctuations at inlet caused by velocity

oscillation has no effect on the heat transfer

enhancement.

The analysis demonstrates that larger velocity at

some moments and the flow reversal during a period
of the flow pulsation are the most important mechanism

of the heat transfer enhancement.
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